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1 Introduction

Today’s massively parallel computer systems are capable of performing many important scientific
computation and data processing tasks at speeds orders of magnitude faster than the sequential
supercomputers they are beginning to replace. Unfortunately, high speed processing is not enough;
programs also have to be able to get data into and out of the machine as quickly as the processors
are able to process it. The so-called input/output (I/O) bottleneck turns out to be particularly
acute when one attempts to use massively parallel systems to manage large spatial databases and
to do large-scale processing of information, especially of a geometric nature. This problem has
received inadequate prior attention. K

Keeping a computer’s processing elements supplied with data is the job of the I/0O system. The
goal of this project work was to develop provably good techniques whereby I/O systems can be
effectively integrated into massively parallel computers so that they can be put to work not only
in the analysis of data but in its management, storage, and retrieval as well.

2 Summary of project

The PI and coauthors have developed the first known algorithms for sorting, problems in compu-
tational geometry, graph problems, and different forms of range searching that are simultaneously
optimal in terms of storage space usage and I/O performance. The PI has worked on how to im-
plement these algorithms in practice using a powerful I/O programming environment called TPIE.
A more detailed summary of the work appears below.

Recently, in [18], as the working group report on Storage I/O for Large-Scale Computing for
the ACM Workshop on Strategic Directions in Computing Research, we discussed the strategic
directions and challenges in the management and use of storage systems—those components of
computer systems responsible for the storage and retrieval of data. The performance gap between
main and secondary memories shows no imminent sign of vanishing, and thus continuing research
into storage I/O will be essential to reap the full benefit from the advances occurring in many other
areas of computer science. We 1dent1ﬁed a few strategic research goals and possible thrusts to meet

those goals.




2.1 Summary of important results

2.1.1 Sorting

In [5], we provided the first optimal algorithms in terms of the number of input/outputs (I/Os) re-
quired between internal memory and multiple secondary storage devices for the problems of sorting,
FFT, matrix transposition, standard matrix multiplication, and related problems. Our two-level
memory model is new and gives a realistic treatment of parallel block transfer, in which during a
single I/O each of the D secondary storage devices can simultaneously transfer a contiguous block
of B records. The model pertains to a large-scale uniprocessor system or parallel multiprocessor
system with D disks. In addition, the sorting, FFT, permutation network, and standard matrix
multiplication algorithms are typically optimal in terms of the amount of internal processing time.
The difficulty in developing optimal algorithms is to cope with the partitioning of memory into
D separate physical devices. Our algorithms’ performance can be significantly better than those
obtained by the well-known but nonoptimal technique of disk striping. Our optimal sorting algo-
rithm is randomized, but practical; the probability of using more than £ times the optimal number
of 1/0s is exponentially small in £(log £) log(M/B), where-M is the internal memory size.

In [6], we introduced parallel versions of two hierarchical memory models and give optimal
algorithms in these models for sorting, FFT, and matrix multiplication. In our parallel models,
there are D memory hierarchies operating simultaneously; communication among the hierarchies
takes place at a base memory level. Our optimal sorting algorithm is randomized and is based upon
the probabilistic partitioning technique developed in the companion paper for optimal disk sorting
in a two-level memory with parallel block transfer. The probability of using £ times the optimal
running time is exponentially small in £(log £) log D.

In [2], we presented an optimal deterministic algorithm called Balance Sort for external sorting
on multiple disks. Our algorithm improves upon the randomized optimal algorithm of [5] as well
as the (non-optimal) commonly-used technique of disk striping. It also improves upon earlier
sorting algorithm in that it has smaller constants hidden in the big oh notation, it is possible to
implement using only striped writes (but independent reads), and it has application to parallel’
memory hierarchies.

In [3], we presented an elegant deterministic load balancing strategy for distribution sort that is
applicable to a wide variety of parallel disks and parallel memory hierarchies with both single and
parallel processors. The simplest application of the strategy is an optimal deterministic algorithm
for external sorting with multiple disks and parallel processors. Our two measures of performance
are the number of I/Os and the amount of work done by the CPU(s); our algorithm is simultaneously
optimal for both measures. We also showed how to sort deterministically in parallel memory
hierarchies. When the processors are interconnected by any sort of a PRAM, our algorithms are
optimal for all parallel memory hierarchies; when the interconnection network is a hypercube, our
algorithms are either optimal or best-known. The constant factors are very small and the best
known, suggesting that the algorithm has definite practical merit.

In [15], we propose a simple, efficient, randomized D-disk mergesort algorithm called SRM that
uses a forecast-and-flush approach to overcome the inherent difficulties of simple merging on parallel
disks-—SRM exhibits a limited use of randomization and also has a useful deterministic version.
The upper bound we derive on expected I/O performance of SRM indicates that SRM is provably
better than disk-striped mergesort (DSM) for realistic parameter values D, M, and B. Average-case
simulations show further improvement -on the analytical upper bound. Unlike previously proposed
optimal sorting algorithms, SRM outperforms DSM even when the number D of parallel disks is

small. ‘ -



2.1.2 TPIE

In recent years, I/O-efficient algorithms for a wide variety of problems have appeared in the lit-
erature. Thus far, however, systems specifically designed to assist programmers in implementing
such algorithms have remained scarce. In [19] we describe TPIE which is a system designed to fill
this void. It supports I/O-efficient paradigms for problems from a variety of domains, including
computational geometry, graph algorithms, and scientific computation. The TPIE interface frees
programmers from having to deal not only of explicit read and write calls, but also the complex
memory management that must be performed for I/O-efficient computation.

In [12] and [16], we looked at the development of TPIE and describe its use in scientific compu-
tation. We discussed algorithmic issues underlying the design and implementation of the relevant
components of TPIE and present performance results of programs written to solve a series of bench-
mark problems using our current TPIE prototype. Some of the benchmarks we present are based
on the NAS parallel benchmarks, while others are of our own creation. We demonstrated that
the CPU overhead required to manage I/O is small and that even with just a single disk the I/O
overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as
CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but

eliminated.

2.1.3 Graph problems

In [7] we presented a collection of new techniques for designing and analyzing efficient external-
memory algorithms for graph problems and illustrate how these techniques can be applied to a
wide variety of specific problems. Our results include:

e Prozimate-neighboring. We presented a simple method for deriving external-memory lower
bounds via reductions from a problem we call the “proximate neighbors” problem. We use
this technique to derive non-trivial lower bounds for such problems as list ranking, expression
tree evaluation, and connected components.

e PRAM simulation. We gave methods for efficiently simulating PRAM computations in ex-
ternal memory, even for some cases in which the PRAM algorithm is not work-optimal. We
apply this to derive a number of optimal (and simple) external-memory graph algorithms.

e Time-forward processing. We presented a general technique for evaluating circuits (or “circuit-
like” computations) in external memory. We also used this in a deterministic list ranking
algorithm.

e Deterministic 3-coloring of a cycle. We gave several optimal methods for 3-coloring a cycle,
which can be used as a subroutine for finding large independent sets for list ranking. Our
ideas go beyond a straightforward PRAM simulation, and may be of independent interest.

e External depth-first search. We discussed a method for performing depth first search and
solifing related problems efficiently in external memory. Our technique can be used in con-
-junction with ideas due to Ullman and Yannakakis in order to solve graph problems involving
closed semi-ring computations even when their assumption that vertices fit in main memory

does not hold.

Our techniques apply to a number of problems, including list ranking, which we discuss in detail,
finding Euler tours, expression-tree evaluation, centroid decomposition of a tree, least-common
ancestors, minimum spanning tree verification, connected and biconnected components, minimum




spanning forest, ear decomposition, topological sorting, reachability, graph drawing, and visibility
representation.

In [20] we considered the problem of using disk blocks efficiently in searching graphs that are
too large to fit in internal memory. Our model allows a vertex to be represented any number of
times on the disk in order to take advantage of redundancy. We give matching upper and lower
bounds for complete d-ary trees and d-dimensional grid graphs, as well as for classes of general
graphs that intuitively speaking have a close to uniform number of neighbors around each vertex.

2.1.4 Computationél Geometry

In [21] we gave new techniques for designing efficient algorithms for computational geometry prob-
lems that are too large to be solved in internal memory, and we use these techniques to develop
optimal and practical algorithms for a number of important large-scale problems in computational
geometry. Our algorithms are optimal for a wide range of two-level and hierarchical multilevel
memory models, including parallel models. The algorithms are optimal in terms of both I/O cost
and internal computation.

Our results are built on four fundamental techniques: distribution sweeping, a generic method
for externalizing plane-sweep algorithms; persistent B-trees, for which we have both on-line and
off-line methods; batch filtering, a general method for performing K simultaneous external-memory
searches in any data structure that can be modeled as a planar layered dag; and external marriage-
before-conquest, an external-memory analog of the well-known technique of Kirkpatrick and Seidel.
Using these techniques we are able to solve a very large number of problems in computational geom-
etry, including batched range queries, 2-d and 3-d convex hull construction, planar point location,
range queries, finding all nearest neighbors for a set of planar points, rectangle intersection/union
reporting, computing the visibility of segments from a point, performing ray-shooting queries in
constructive solid geometry (CSG) models, as well as several geometric dominance problems.

These results are significant because large-scale problems involving geometric data are ubig-
uitous in spatial databases, geographic information systems (GIS), constraint logic programming,,
object oriented databases, statistics, virtual reality systems, and graphics. This work makes a big
step, both theoretically and in practice, towards the effective management and manipulation of
geometric data in external memory, which is an essential component of these applications.

In [22] we developed efficient new external-memory algorithms for a number of important prob-
lems involving line segments in the plane, including trapezoid decomposition, batched planar point
location, triangulation, red-blue line segment intersection reporting, and general line segment inter-
section reporting. In GIS systems, the first three problems are useful for rendering and modeling,
and the latter two are frequently used for overlaying maps and extracting information from them.
To solve these problems, we combine and modify in novel ways several of the previously known
techniques for designing efficient algorithms for external memory. We also develop a powerful new
technique that can be regarded as a practical external memory version of fractional cascading.
Except for the batched planar point location problem, no algorithms specifically designed for exter-
nal memory were previously known for these problems. Our algorithms for triangulation and line
segment intersection partially answer previously posed open problems, while the batched planar
point location algorithm improves on the previously known solution, which applied only to mono-
tone decompositions. Our algorithm for the red-blue line segment intersection problem is provably

optimal.




2.1.5 Range Searching and Databases

In [14], we presented a new approach to designing data structures for the important problem of
external-memory range searching in two and three dimensions. We based our data structures on
the novel concept of B-approximate boundaries, which are manifolds that partition space into
regions based on the output size of queries at points within the space. Our data structures answer
a longstanding open problem by providing three dimensional results comparable to those provided
by Subramanian and Ramaswamy for the two dimensional case, though completely new techniques
are used. Ours is the first 3-D range search data structure that simultaneously achieves both a
base-B logarithmic search overhead and a fully blocked output component.

In [1], we examined I/O-efficient data structures that provide indexing support for new data
models. The database languages of these models include concepts from constraint programming
(e.g., relational tuples are generalized to conjunctions of constraints) and from object-oriented pro-
gramming (e.g., objects are organized in class hierarchies). Let n be the size of the database, ¢
the number of classes, and t the size of the output of a query. Indexing by one attribute in the
constraint data model (for a fairly general type of constraints) is equivalent to external dynamic
interval management, which is a special case of external dynamic 2-dimensional range searching.
We presented a semi-dynamic data structure for this problem which has optimal worst-case space
O(n/B) pages and optimal query I/O time O(logg n+t/B) and has O(loggn + (log% n)/B) amor-
tized insert I/O time. If the order of the insertions is random then the expected number of I/O
operations needed to perform insertions is reduced to O(logg n). Indexing by one attribute and by
class name in an object-oriented model, where objects are organized as a forest hierarchy of classes,
is also a special case of external dynamic 2-dimensional range searching. Based on this observation
we first identify a simple algorithm with good worst-case performance for the class indexing prob-
lem. Using the forest structure of the class hierarchy and techniques from the constraint indexing
problem, we improve its query I/O time from O(log, clogg n +t/B) to O(logg n +t/B + log, B).

In [17], we presented a space- and I/O-optimal external-memory data structure for answering
stabbing queries on a set of dynamically maintained intervals. Our data structuré settles an open
problem in databases and I/O algorithms by providing the first optimal external-memory solution to
the dynamic interval management problem, which is a special case of 2-dimensional range searching
and, as discussed in [1], a central problem for object-oriented and temporal databases and for
constraint logic programming. Our data structure simultaneously uses optimal linear space and
achieves the optimal output-sensitive I/O query bound and I/O update bound. Our structure is
also the first optimal external data structure for a 2-dimensional range searching problem that
has worst-case as opposed to amortized update bounds. Part of the data structure uses a novel
balancing technique for efficient worst-case manipulation of balanced trees, which is of independent
interest.

In [13], for the first time the problem of estimating alphanumeric selectivity is studied in the
presence of wildcards. Success of commercial query optimizers and database management systems
(object-oriented or relational) depend on accurate cost estimation of various query reorderings.
Based on the intuition that the model built by a data compressor on an input text encapsulates
information about common substrings in the text, we developed a technique based on the suffix
tree data structure to estimate alphanumeric selectivity. We evaluate our imethods empirically in
the context of the TPC-D benchmark. We studied our methods experimentally against a variety
of query patterns and identify five techniques that hold promise.



2.1.6 On-line algorithms and load balancing

In [8], we considered the load balancing problem, where there is a set of servers, and jobs arrive
sequentially. Each job can be run on some subset of the servers, and must be assigned to one
of them in an online fashion. Traditionally, the assignment of jobs to servers is measured by the
norm; in other words, an assignment of jobs to servers is quantified by the maximum load assigned
to any server. In this measure the performance of the greedy load balancing algorithm may be a
logarithmic factor higher than the offline optimal. In many applications, the norm is not a suitable
way to measure how well the jobs are balanced. If each job sees a delay that is proportional to the
number of jobs on its server, then the average delay among all jobs is proportional to the sum of the
squares of the numbers of jobs assigned to the servers. Minimizing the average delay is equivalent
to minimizing the Euclidean (or Lg) norm. For any fixed p, 1 < p < oo, we show that the greedy
algorithm performs within a constant factor of the offline optimal with respect to the L, norm.
The constant grows linearly with p, which is best possible, but does not depend on the number of
servers and jobs.

In [9], we presented a natural online perfect matching problem motivated by problems in mobile
computing. A total of n customers connect and disconnect sequentially, and each customer has an
associated set of stations to which it may connect. Each station has a capacity limit. We allowed
the network to preemptively switch a customer between allowed stations to make room for a new
arrival. We wish to minimize the total number of switches required to provide service to every
customer. Equivalently, we wish to maintain a perfect matching between customers and stations
and minimize the lengths of the augmenting paths. We measured performance by the worst case
ratio of the number of switches made to the minimum number required.

When each customer can be connected to at most two stations:

e Some intuitive algorithms have lower bounds of Q(n) and Q(n/logn).
e When the station capacities are 1, there is an upper bound of O(y/n).

e When customers do not disconnect and the station capacity is 1, we achieve a competitive’
ratio of O(logn).

e There is a lower bound of Q(y/n) when the station capacities are 2.
o We presented optimal algorithms when the station capacity is arbitrary in special cases.

In [11], we first presented a simple algorithm for bin-packing that is worst-case optimal among
bounded-space algorithms. However, it is not an online algorithm. We presented a new definition
of lookahead for online algorithms, and show how to convert the simple algorithm into a more
complicated optimal algorithm that is online with bounded lookahead. The main contribution of
this paper may be the definition of online lookahead. Finally, we present experimental evidence
showing that the basic approach works well on inputs drawn independently and uniformly from

[0,1].

2.2 Approximate data structures

In [4], we introduced the notion of approzimate data structures, in which a small amount of error
is tolerated in the output. Approximate data structures trade error of approximation for faster

operation, leading to theoretical and practical speedups for a wide variety of algorithms. We gave
approximate variants of the van Emde Boas data structure, which support the same dynamic op-
erations as the standard van Emde Boas data structure, except that answers to queries are approx-
imate. The variants support all operations in constant time provided the error of approximation is



1/polylog(n), and in O(loglogn) time provided the error is 1/polynomial(n), for n elements in the
data structure.

We considered the tolerance of prototypical algorithms to approximate data structures. We
studied in particular Prim’s minimum spanning tree algorithm, Dijkstra’s single-source shortest
paths algorithm, and an on-line variant of Graham’s convex hull algorithm. To obtain output
which approximates the desired output with the error of approximation tending to zero, Prim’s
algorithm requires only linear time, Dijkstra’s algorithm requires O(mloglogn) time, and the on-
line variant of Graham’s algorithm requires constant amortized time per operation.

2.2.1 Object complexity

In [10], we define a new complexity measure, called object complezity, for hidden-surface elimination
algorithms. This model is more appropriate than the standard scene complexity measure used in
computational geometry for predicting the performance of these algorithms on current graphics
rendering systems.

We also presented an algorithm to determine the set of visible windows in 3-D scenes consisting
of n isothetic windows. It takes time O(nlogn), which is optimal. The algorithm solves in the
object complexity model the same problem that Bern addressed for the standard scene complexity
model. -
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